Advanced Cosmology (L24)
Anthony Challinor and Tobias Baldauf

This course will take forward at much greater depth some of the topics in modern cosmology covered in the Michaelmas Term *Cosmology* course. The prediction from fundamental theory for the statistical properties of the primordial perturbations remains the key area of confrontation with cosmological observations, both from large-scale structure and the cosmic microwave background (CMB). This course will develop the mathematical tools and physical understanding necessary for research in this very active area.

Cosmic microwave background

- Statistics of random fields
- Relativistic kinetic theory
- The Boltzmann equation
- The CMB temperature power spectrum
- Photon scattering and diffusion
- Primordial gravitational waves and the CMB
- CMB Polarization

Inflationary theory and Large-Scale Structure

- Primordial non-Gaussianities
- Effective field theory of inflation
- CMB bispectrum and optimal estimators
- Modelling late time non-linearities in large-scale structure
- Effective field theory of large-scale structure
- Tracers of large-scale structure and the peak formalism

Pre-requisites

Material from the Michaelmas term *Cosmology* is essential. Familiarity with introductory Quantum Field Theory and General Relativity is recommended.

Literature

Textbooks

Useful references

Additional support

Four examples sheets will be provided and four associated examples classes will be given. There will be a one-hour revision class in the Easter Term.